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Interplay of capillary and elastic driving forces during microstructural
evolution: Applications of a digital image model
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A recently developed model of curvature-driven, two-dimensional microstructure evolution is
modified to include elastic strain energy at solid-fluid interfaces as an additional driving force for
mass transport. Local phase distributions within a digital image of the microstructure are used to
interpolate an isopotential contour that represents the equivalent sharp surface, along which local
properties such as curvature are calculated. To determine the strain energy distribution, a finite
element method is employed, using the pixel grid as the mesh. Interface-reaction-controlled mass
transport is simulated using a finite difference approach along the interface. Calculations of the
strain energy density and chemical potential distributions within simple systems show reasonable
agreement with analytical results, and the predicted stability and evolution of such systems also
agree with the predictions of other investigators. The model is also applied to a more complex
system for which neither analytical nor other numerical methods can be readily used, and useful
quantitative information is obtained on the energetics and structural changes. ©1998 American
Institute of Physics.@S0021-8979~98!01408-X#
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I. INTRODUCTION

In a recent article, one of the authors described a num
cal method for simulating dissipative temporal evolution
two-dimensional microstructures.1 That method models the
dynamics of evolution according to partial differential equ
tions derived from linear irreversible thermodynamics, a
tracks the resulting interface motion. When the assumptio
made that global interface free energy provides the only
preciable driving force, then—provided that the interfa
free energy density is isotropic—the local driving force f
evolution is determined solely by gradients in the interfac
mean curvature.2 Curvature gradients are therefore sufficie
to describe the driving force for Ostwald ripening of a d
persed phase in a fluid,3,4 for coarsening in porous media5

for high-temperature crack healing,6 and for the instability of
long cylinders toward spheroidization.7

On the other hand, it has long been recognized that e
tic deformation can also provide an appreciable driving fo
for interface motion. Charles and Hillig were perhaps t
first to incorporate elastic driving forces in a description
cavity growth during static fatigue of glasses.8,9 Asaro and
Tiller included elastic strain energy density in a descript
of the boundary values of the chemical potential to perform
linear stability analysis of the planar interface separatin
stressed two-dimensional semi-infinite solid from a fluid10

Rice and Chuang11 found boundary values for the chemic
potential for a cavity within an elastically deformed infini
solid. Grinfeld12 and Srolovitz13 have both re-examined th
role played by elastic deformation in determining the sta
4470021-8979/98/83(8)/4477/10/$15.00
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ity of planar surfaces. These theoretical investigations
conclude that elastic deformation alters the boundary va
of the chemical potential and, therefore, can significantly
ter the rate and trajectory of interface motion.

On the basis of these considerations, it seems desir
to have a numerical model that not only can assess the
bility of interface morphologies, but that also can track i
terface motion in microstructures under the influence of b
curvature gradients and elastic deformation. Yang a
Srolovitz14 used an elastic Green’s function in a finite el
ment model to simulate the evolution by surface diffusion
a periodic sinusoidal surface under these driving forc
Wang et al.15–17 have used a time-dependent Ginzburg
Landau~TDGL! model to simulate the shape evolution
coherently misfitting solid precipitates in a solid matrix wh
the elastic constants of both phases are the same. The
modeling approach has the advantage that interface trac
is automatic, even during topological changes.

In this article, we extend the numerical model report
in a previous article1 to include elastic strain energy densi
at solid/fluid interfaces. In contrast to the TDGL models, th
model uses a sharp-interface approach rather than a dif
interface. Nevertheless, it shares with TDGL models the
vantage of automatic interface tracking and accommoda
of topological changes. It also provides a clear connect
between model variables and thermodynamic/kinetic par
eters describing physical systems, and therefore allows
to adjust the absolute rates of different mechanisms of m
transport. And because it formulates the dynamics in te
7 © 1998 American Institute of Physics
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of linear irreversible thermodynamics, it can be readily e
tended to include other possible driving forces such as t
mal gradients and electric fields. This model therefore co
form the basis for a processing design tool that, in conju
tion with limited experimental studies, might be used to d
termine optimal processing routes for obtaining desired
crostructures.

In the next section, we describe the hybrid numeri
method for computing boundary values of the chemical
tential and for simulating the dynamics of interface motio
We then give examples that illustrate some of t
advantages—and limitations—of the current model. Fina
we outline some approaches that are underway for improv
the accuracy of the chemical potential calculation.

II. DRIVING FORCE: CURVATURE AND ELASTIC
ENERGY DENSITY

Driving forces for interface motion under the combin
influences of mean curvature and elastic energy density h
been derived elsewhere with varying degrees of rigor.8–13All
of these derivations assume that single-component inter
motion occurs by coherent dissolution to and coherent p
cipitation from a fluid of the same composition as the so
and they all arrive at essentially the same expression for
boundary value of the chemical potential. To motivate t
expression, consider the isothermal work per mole p
formed in coherently precipitating a solid layer of thickne
dz onto a small interfacial element. That work may be e
pressed as the sum of~1! the incremental work required t
displace the interface and~2! the deformation work required
to make the solid fit coherently~see Fig. 1!. The first com-
ponent of the sum is

dW15gdA5g
]A

]V

]V

]z
dz5gkA0dz, ~1!

whereg is the interfacial free energy density~assumed to be
isotropic!, dA is the incremental change in the interface e
ment, of initial areaA0 , accompanying its normal displace
ment bydz, andk is the mean curvature of the interfaci
element. The second component to the work is given by

dW25E
dV

s i j e i j dV.

If the precipitated volume,dV is small enough, and if it can
be considered to be deformed homogeneously and quasi

FIG. 1. Schematic illustration of the virtual motion of a solid-fluid interfa
by coherent deposition of a volume of soliddV, causing the local surface
element to be displaced a distancedz. The work required for this deforma
tion is assumed to be the sum of~1! the work required to form the extra
surfacedA, and ~2! the elastic work required to make the added solid
coherently.
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cally, then we may consider the components of the stress
strain tensorss i j ande i j as constant averaged quantities ov
its volume,dV, so that

dW25
1

2
s i j e i j dV5

1

2

]V

]z
s i j e i j dz,

5
1

2
A0ŝ: êdz.

~2!

Combining Eqs.~1! and ~2! gives

dW5Fgk1
1

2
ŝ: ê GA0dz5Fgk1

1

2
ŝ: ê GVdN, ~3!

whereV is the molar volume of the deposited material, a
dN is the number of moles deposited. With the above
sumptions, this incremental work is equal to the incremen
change in the Helmholtz free energy of the deposited m
rial, and the bracketed quantity on the right side of Eq.~3!
can be immediately identified as the difference in chemi
potential between the fluid and the adjacent solid. Theref

m5m01FgVk1
1

2
Vŝ: ê G ,

~4!

5m01VFgk1
1

2
ê:Ĉ: ê G ,

where m0 is the chemical potential of the relaxed solid
equilibrium with a zero-curvature interface. The last for
arises from assuming linear elasticity, with stiffness ten
Ĉ. Although Eq. ~4! is general enough to include elast
anisotropy, we use an isotropic stiffness tensor in this arti

Note that Eq.~4! is a valid expression for the chemica
potential only along single-component solid-fluid interfac
that are isotropic ing. The relative magnitudes of the secon
and third terms on the right side of Eq.~4! have a strong
influence on the distribution of chemical potential along su
interfaces, and a rich variety of interface motions are acc
sible from this restricted equation. Throughout the remain
of this article we will use Eq.~4! to compute the driving
force for interface motion and, consequently, restrict our
tention to those types of interfaces for which Eq.~4! is valid.
We therefore do not consider solid-solid interfaces like gr
boundaries and interphase boundaries.

III. COMPUTATIONAL METHODS

The numerical method uses a digital image to mode
microstructure. That is, the image of a portion of a hetero
neous microstructure is mapped onto a regular lattice of
square or 3D cubic elements~pixels!. Each element in the
lattice is assigned the thermodynamic properties of the ph
corresponding to its position in the original microstructu
image. Digital images can therefore reproduce 2D or 3D
crostructures of virtually arbitrary complexity, although
this article we restrict attention to 2D microstructures. F
thermore, the discretization reduces the problem of calcu
ing continuum microstructural evolution to that of evaluati
small changes in the local pixel environment. The relat
size of a microstructure that can be stored this way—tha
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the size of the microstructure divided by the size of the m
mum resolvable microstructural feature—is somewhat l
ited by the computer’s memory capacity. Even so, on a hi
performance work station one can easily accommodate ra
of at least 100–1000 in 2D.

The pixels comprising the microstructure image a
treated as continuum 2D ‘‘volume’’ elements characteriz
by a parameter,h, that defines the fraction of each pha
within that element. In the general case of ann-phase sys-
tem, one could think ofh as ann tuple, or a vector in an
orthogonaln space, with each vector component defining
phase fraction of a different phase. For a microstructure c
posed of a single-component solid phase and an other
inert fluid containing that component, which is the micr
structure type that we will focus on in this paper,h may be
thought of as a scalar defining the area fraction of the p
occupied by the solid phase~0<h<1!. Mass transport
mechanisms and rates are fixed by specifying a range
pixel exchange interactions and employing finite differen
algorithms to approximate the partial differential equatio
~PDEs! describing the time rate of change ofh within each
pixel.

One other advantage of the digital-image approach
that, in addition to approximating PDEs by finite differen
methods, it is possible to devise efficient numerical routin
to compute physical quantities that determine the local d
ing force for interface motion within the microstructure. W
use two such algorithms in the present simulations, one
compute local interface curvature and one to determine
elastic strain energy density field. Both of these algorith
have been described in considerable detail elsewhere,1,18 and
they will be only briefly outlined here.

A. Mean curvature

The algorithm used to compute curvature has been
scribed in Ref. 1. It is based on the concept of approxima
the interface between two phases by linearly interpolating
isopotential contour, or level set, through a 2D or 3D po
set ~the h-values assigned to the center of each pixel e
ment!. We refer to this level set as the equivalent sharp s
face ~ESS!. A particular value ofh is selected as the inter
polation point, usually 0.5 for a two-phase system. The le
set is thus composed of connected line segments in
Methods for constructing 2D level sets from 3D point s
have been published,19 so there is no conceptual difficulty i
extending the method to three dimensions.

Having constructed the ESS for a given microstructu
image, the unit outward normal vectorn for each segmen
can be easily determined from vector algebra. Then the
crete approximation to the mean curvaturek of that portion
of the interface can be calculated according to

k5¹s•n ~5!

by using numerical differentiation to compute the surfa
divergence.

B. Elastic energy density

We assume plane-stress elasticity, and use the pixel
of the digital image to define a finite element mesh,
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nodes of which are located at the pixel corners. The displa
ment field u(x,y) is approximated using a standard fini
element expansion for a four-noded element,

ui~x,y!5ui
sw1S ui

se2ui
sw

j D x1S ui
nw2ui

sw

j D y

1S ui
ne1ui

sw2ui
se2ui

nw

j2 D xy,

whereui
sw, for example, is the value of thei -direction dis-

placement at the southwest~lower lefthand corner! node of
the square element,i indicates either thex or y component of
the displacement,j is the edge length of the square eleme
in the reference state, andx and y are continuous variable
with respect to a local coordinate system having the sou
west node as its origin.

After specifying the mechanical conditions at each of t
periodic boundaries of the system~in these simulations, we
used either fixed grips, fixed displacement rate, or fixed tr
tions along the boundaries!, the equilibrium nodal displace
ments are computed by minimizing the linear elastic str
energy, according to a fast conjugate gradient algorithm w
ten specifically to operate on regular square element me
with periodic boundary conditions.18 Since this is an iterative
solver, one must specify a maximum value for the total e
ergy gradient below which the system is considered to
relaxed. For these simulations, the maximum gradient is
to 1029 times the number of elements.

There is some question as to how the elastic constan
a given pixel should depend on the value ofh within that
pixel. Certainly whenh51 and 0, the bulk and shear modu
are equal to those of the solid and fluid phase, respectiv
An appropriate functional dependence of the elastic c
stants onh for 0,h,1 is not readily apparent, however. I
a composite medium, the effective elastic constants dep
not only on the fraction of each phase present, but also on
spatial distribution of those phases relative to the app
load. Thus a rigorously correct choice for the elastic co
stants of a given pixel requires knowledge of the phase
tribution within that pixel. In this article, we sacrifice som
accuracy for the sake of considerable numerical efficiency
assigning to each pixel

~K,G!5H ~K f ,Gf ! h,h* ,

~Ks ,Gs! h>h* ,

whereK is the bulk modulus,G is the shear modulus, th
subscriptsf and s denote fluid and solid, respectively. Th
cutoff value,h* , is chosen as the value that produces
closest agreement between numerical calculation and
analytical prediction of the strain energy distribution alo
the surface of a circular hole in a uniaxially strained hom
geneous sheet. We determine the value ofh* in the simula-
tion results~Sec. IV! and, in the discussion~Sec. V!, we
describe a potentially more accurate method that is curre
under scrutiny.

By averaging the equilibrium nodal strains of a give
pixel P, we compute the average strain withinP. The aver-
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age elastic strain energy density in each pixel is calcula
assuming linear elasticity, and is used in Eq.~4! to determine
the elastic contribution to the chemical potential.

C. Kinetics

In general, gradients in the boundary values of
chemical potential will drive a redistribution of materia
This redistribution may be accomplished by one or more
several possible transport paths/mechanisms. In this num
cal framework, a given rate-controlling step is modeled
its corresponding continuum rate equation, which is appro
mated by a finite difference formulation and adaptively in
grated forward in time using a maximum dimensionless ti
step ofDt, which we set to unity for convenience.

The simulations presented in this article were all p
formed using surface-attachment-limited kinetics~SALK!,
by which it is assumed that diffusion rates are much gre
than the rate of coherent accretion/dissolution of matte
the interface. With this assumption it may readily be show1

that the net rate of accretion per unit area,J, at any pointx
along the interface is

J~x![
dN

dt
5

kSALK

RT
@mamb2m~x!#, ~6!

wherekSALK is the reaction rate constant,R is the gas con-
stant,T the absolute temperature, andmamb is the ambient
chemical potential of diffusing species in the fluid pha
which is approximately constant when diffusion is very fa
compared to equilibration with the interface. Each term
Eq. ~6! is made dimensionless by scaling time and len
values to the reaction rate constant and pixel edge length~see
Appendix A for a table of all dimensionless quantities us
in this article!. Equation~6! is then discretized to give

Dhp5C@mamb2mp#SpDt, ~7!

wherehp is the solid volume fraction located within pixe
P,C is a dimensionless rate constant, andSp is the ~dimen-
sionless! length of interface associated with thePth pixel.

The value ofmamb that conserves mass can be calcula
as the mean value ofm over the entire set of interfaces,G:1

m̄5
*GmdS

*GdS
.

Setting mamb greater/less thanm̄ will cause a monotonic
increase/decrease in solid mass.

IV. SIMULATION RESULTS

All quantities used in the remainder of this article ha
been made dimensionless~see Appendix A for the conver
sions!.

A. Determination of h*

As mentioned in the previous section, we choose a cu
value forh, above which a pixel is assigned the elastic pro
erties of the solid. To determine a reasonable value forh* ,
we numerically calculate, for different trial values ofh* , the
elastic strain energy density distribution along the surface
a circular cavity in a uniaxially strained sheet, and comp
d,

e
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to the analytical result, as shown in Fig. 2. The value ofh*
that most closely reproduces the analytical curve is 0.02,
so that value is used to obtain the following results. We w
return later to some of the implications of choosing th
value.

B. Chemical potential along a sinusoidal interface

To find an indication of how accurately the numeric
method calculates chemical potential, we compare our
merical results to an analytical prediction for a shallow sin
soidal perturbation in a 2D solid that is thick compared to
amplitude of the perturbation. We choose a relatively sm
system, 101351 pixels to conduct the test, with period
boundary conditions inx, and a tensile stresssxx5s0 . The
interface is given byy5a cos 2px/l, with a55 and
l5100.

Analytical expressions for the stress components al
the surface of a sine wave under uniaxial tension
known10 and may be used to calculate the boundary value
the strain energy density~see Appendix B!.

At fixed applied stress and surface geometry, the mag
tude of the elastic term relative to the curvature term in E
~4! is determined by the dimensionless ratioS5s0AL/Eg,
where E is the Young’s modulus of the solid andL is a
characteristic length that sets the scale of the system.13 We
take L5l, the wavelength of the perturbation. Numeric
and analytical values for the chemical potential are shown
Fig. 3 for two values of this ratio. When the curvature te
dominates@S51, see Fig. 3~a!#, the numerical values are
somewhat scattered about the analytical curve, reflec
pixel-to-pixel inaccuracy in the curvature calculation caus
by the sawtooth geometry of the surface in the digital ima
In this particular instance, the scatter seems to be about
of the range in values, although it must be remembered
the range in curvature values is quite small for such a s
low sine wave. The relative accuracy in the curvature
greater when the range of curvatures is wider. In any ev
the ESS method for calculating curvature is substantia

FIG. 2. Distribution of elastic strain energy density along the upper ri
quadrant of a circular cavity in a homogeneous sheet subjected to an ap
stress,sapp in the y direction.u is the interior angle between thex axis and
the radial position vector whose origin is at the center of the cavity.
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more accurate than alternative methods for digital image20

and the effect of the local scatter on the predicted dynam
of evolution has been previously shown to be quite smal1

When the elastic term in Eq.~4! dominates@S576 in
Fig. 3~b!#, the numerical calculations underestimate the a
lytical curve except atx/l50 and 1, where it slightly over-
estimates the analytical values. This is an artifact of hav
chosen a single step-function dependence of stiffness oh,
which causes the finite element algorithm to interpret
interface as being terraced. At the shallow amplitudes use
this example, the terraces are fairly long, and the effect i
flatten out the strain energy distribution. This interpretat
is supported by the calculated strain energy density alon
circle shown in Fig. 2; the curve forh 50.02 fits the ana-
lytical curve quite closely along most of the circle, exce
near p/2 where the surface is approximated as a long
terrace.

Compared with other applications of finite element/fin
difference methods, one might not expect grid refinemen

FIG. 3. Comparison of numerical computation of dimensionless chem
potential to analytical results~solid lines!, showing the effect of grid reso
lution. l is the wavelength of the sinusoidal perturbation that is under
sion in thex direction.~a! S51, and~b! S576.
s

-

g

e
in
to
n
a

t
t

to

substantially improve numerical convergence to an analyt
result. As already noted, the underlying digital image cau
interfaces to have a sawtooth shape and, while the curva
calculation is more accurate by the ESS algorithm than
other methods for digital images,1,20 the terraced nature o
surfaces cannot be eliminated by the former method. For
finite element calculations of elastic strain energy dens
the step-function dependence of the elastic moduli onh also
causes a sawtooth surface geometry. Therefore, even
grid refinement surfaces are still composed of ledges
terraces, and one can expect a finite amount of local sca
in surface quantities, like boundary values of chemical p
tential.

To test the convergence of the numerical solution, sim
lations were conducted on the same sine wave using p
grids of 51327, 101351, 2013101, and 4013201. The cal-
culated chemical potentials are shown in Figs. 3~a! and 3~b!.
It is clear that grid refinement has, at best, a weak effect
convergence to the analytical curve, since the local scatte
not appreciably reduced with increasing resolution. Later
the discussion, possibilities for further improving numeric
convergence will be addressed. It will become evident in
next section, however, that the local scatter in chemical
tential does not markedly affect the predicted dynamics
interface motion.

C. Evolution of a sinusoidal perturbation

Referring to Fig. 3, it is clear that the position of max
mum chemical potential shifts from the crest of the surfa
at low applied stresses, to the valley at higher stres
Therefore, at low applied stresses, mass should flow from
crest to the valley, causing a decrease in amplitude.
higher stresses, mass should flow from the valley to the cr
and the amplitude, at least initially, should increase. As m
tioned in the introduction, several investigations of the init
stability of such a pertubation toward amplitude chang
have been published.10,12,13 Of these, only Srolovitz13 con-
ducted a linear stability analysis for both surface diffusi
kinetics and SALK~which he referred to as evaporatio
condensation!. His prediction for SALK is that any wave
number k.k* 52sxx

2 /Eg will decay exponentially, while
longer wavelengths are unstable toward growing in am
tude. In a later article14 Yang and Srolovitz simulated th
evolution of a sine wave by surface diffusion and show
that at high stresses a surface instability manifested itse
the appearance and growth of a sharp cracklike feature in
valleys. We know of no prior predictions for the analogo
temporal evolution by SALK, which we now present.

To facilitate a comparison with the results of Yang a
Srolovitz,14 we report results in units of scaled stress,S
5s0Al/gE and scaled time,t5l2/(Cg) @C is the dimen-
sionless rate constant from Eq.~7!#. Figure 4 shows the evo
lution by SALK when S52.5. The amplitude slowly in-
creases at first, and then att'1.731023 t, a groove begins
to form in the valley. The groove sharpens and extends
ther into the solid with time due to the increasing stra
energy at the tip. We do not, however, identify the groove
a ‘‘crack’’. Whereas growth of a crack can occur when t
local stress exceeds the bond strength, the formation of

al
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groove in Fig. 4 occurs as a result of a local maximum
chemical potential, and its growth occurs by material tra
port over distances that are large compared to atomic dim
sions. Furthermore, the length scale of a crack tip is
atomic dimensions, and we can claim no such absolute
mensions for the groove tip since, according to the c
tinuum formulation of the model, the minimum length sca
is set by the grid resolutionj.

Figure 5 shows, for several values ofS, the time depen-
dence of the maximum height difference,h, scaled by the
initial amplitude of the sinusoidal surface. The stress-f
dynamics~S50! corresponds very closely to that predict
by Mullins21 for the amplitude decay of a shallow sin
wave.1 Whena0 /l!1, then

da

dt
52Ck2a,

wherek52p/l. Integration yields, to first order int21

a2a052a0Ck2t, ~8!

i.e., the negative slope for theS50 curve in Fig. 5 is pro-
portional toC. Low stresses~S51! lower the driving force

FIG. 4. Evolution by SALK of a sinusoidally perturbed interface forS52.5.
The ratio of initial amplitude to wavelength isa0 /l50.05. Times shown at
left are in terms oft.

FIG. 5. Maximum height difference as a function of time for a sinusoi
surface evolving under different values ofS. Height is normalized by the
initial amplitude.
-
n-
f
i-
-

e

for amplitude decay, although the trajectory of evolution
still much like the stress-free trajectory. Clearly from Fig.
a critical value ofS—between 1 and 2—exists for which th
interface is unstable toward formation and growth of
groove in the valley. Further simulations not depicted in F
5 indicateSc51.760.1. This value agrees closely with th
predicted by Srolovitz’s linear stability analysis13 ~Sc

51.77 using the same physical constants as for these s
lations!.

Knowledge ofSc allows one to plot a map for the per
turbed surface, as shown in Fig. 6, that indicates the direc
of the surface instability. In Fig. 6, the ordinate valuess0 /E
indicate the strength of the elastic contribution tom, and the
abscissa valuesg/l indicate the strength of the curvatur
contribution. The boundary curve separating the growth fi
from the decay field corresponds toSc .

D. RANDOMLY PACKED PARTICLES

We now proceed to analysis of a more complicated s
tem, namely a random packing of solid circles in two dime
sions, shown at the top of Fig. 7. Each particle has a diam
d selected at random within a range of 11–31 pixels, a
each was placed within a 1603160 box by dropping it from
randomly selected locations along the top boundary, us
periodic boundaries in the horizontal direction, until furth
displacement was prevented by contact with other partic
Once all the particles~a total of 53! were placed, yielding a
solid fraction f 50.74, periodic boundary conditions wer
also enforced along the top and bottom edges. A unia
tensile straine0 was applied along the horizontal direction.
side-by-side comparison of the predicted evolution us
identical rate constantsC is shown in Fig. 7 forEe0

2L/g
50 and 2.5; the scaled unit of time is now taken to bet
5L2/(Cg) with L5160 being the length of the system.

When no deformation is applied to the particle syste
reduction of surface free energy causes evolution towar
2D lamellar morphology~recall that all boundaries are per
odic!. The presence of deformation in thex direction, on the
other hand, evidently produces a strain energy distribut

l

FIG. 6. Stability map for a sinusoidal surface under the influence of b
capillary and elastic driving forces.
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that makes certain of the initial interparticle contacts u
stable toward attenuation and severance. As more of the
tacts disappear by this instability, increasing strain ene
density is shifted to the remaining load-bearing conta
which accelerates their attenuation. This process is repe
until the solid suffers a complete division to form an isolat
domain. Thus, invoking the nomenclature of Newnha
et al.,22 deformation causes a change in the predicted c
nectivity of the structure from 1-1 to 0-2.

The trajectories shown in Fig. 7 are sensitively dep
dent, not only on the applied deformation, but also on
initial geometry. In particular, the lamellar morphology th
ultimately results without deformation is entirely a result
the inhomogeneous packing near the top and bottom bo
aries. A packing algorithm that allows particles to overl
those boundaries, as they do for the horizontal bounda
would presumably result in a much more statistically isot
pic microstructure. But despite this dependence on initial
ometry, one might expect the gross influences
deformation—provided that it is large enough—to be qua
tatively the same whether or not particle overlap along
top and bottom boundaries is allowed. The elastic strain
ergy density should be relatively concentrated along a ba
approximately orthogonal to the loading axis, with the le
load-bearing area. Propagation of cracklike flaws due to
peated neck rupture, if it occurs at all, should be obser
along this band.

In addition to these qualitative influences of elastic d
formation, it is possible to quantitatively assess certain
pects of the evolution in the same way as described m

FIG. 7. Assembly of particles in a 1602 box. Left column shows evolution
of system by SALK with no applied deformation. Right column sho
evolution with a tensile strain of 0.005 applied in the horizontal directio
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extensively in Ref. 1. Here we calculate the time depende
of the surface free energy and the total free energy.

1. Surface free energy and total free energy

For convenience of notation, we refer to the evoluti
trajectory in the left column of Fig. 7 asT 0 and that in the
right column asT 0.005. Figure 8 gives the surface free en
ergy and the total ~Helmholtz! free energy, F5gA
1*VesdV, as functions of time for both of the trajectorie
shown in Fig. 7. Under deformation, the surface free ene
cannot relax as rapidly as it can without deformation@Fig.
8~a!#, even though the deformed system has a higher t
free energy than the undeformed one@Fig. 8~b!#.

Several salient points may be noted about the plot oF
versus time in Fig. 8~b!. First, the difference inF(t50)
betweenT 0.005 and T 0 is equal to the total stored elast
energy in the former. Second, judging from Fig. 7, the cu
for exx50 should asymptotically approach the value for
straight lamella, i.e.,

lim
t→`

F52gL50.32.

FIG. 8. Reduction with time of~a! surface free energy and~b! total Helm-
holtz free energy for the trajectories shown in Fig. 7.
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Similarly, when exx50.005, the severance of the netwo
destroys the connectivity of the solid in the horizontal dire
tion. Since the solid is thereafter surrounded by ze
modulus phase, it is strain-free. The limiting shape is the
fore a circle enclosing the same amount of solid as
lamella, so

lim
t→`

F52gApVs50.49,

whereVs is the volume~strictly, area! of solid.
The limiting slopes of the curves ast→01 in Fig. 8~b!

are

lim
t→01

t

F~ t50!

dF

dt
'H 234.43105, for T 0 ,

227.53105, for T 0.005.

One may viewF as an (N21)-dimensional hypersurfaceF
in an N-dimensional space, whereN is the number of con-
stitutive variables for the system, including the appli
strain. Accordingly, the initial states ofT 0 and T 0.005 may
be thought of as two positionsF0 and F0.005 on F . The
evolution traces the steepest monotonically decreasing
on F consistent with fixed applied strain and the kine
constraints of motion by SALK. From the fact thatF de-
creases only 2/3 as rapidly alongT 0.005as it does alongT 0 ,
one may infer that the local topography ofF is ‘‘shallower’’
at F0.005 than atF0—at least along those paths allowed
SALK at fixed applied strain—despite the fact thatF0.005

.F0 .

V. DISCUSSION

Gradient flow concepts23 have been used to show th
motion by (k2k̄), that is, by SALK, allows the surface fre
energy to decrease at a higher rate than does motion by
other volume-conserving mechanism, like surface diffus
~motion by Laplacian of mean curvature for isotropicg!.
Previous 2D simulations using this model gave the sa
result.1 However, in the present simulations, motion
SALK is equivalent to (m2m̄) rather than (k2k̄), the dif-
ference being in the contributions tom of the elastic energy
density. Furthermore, there is no one-to-one correspond
betweenk and the local strain energy density, since the la
quantity will depend on longer-range structural features
the microstructure such as the connectivity. TrajectoryT 0 in
Fig. 7 is motion byk2k̄. Therefore, as predicted by Taylo
and Cahn23 and as further demonstrated in Ref. 1, that t
jectory is a constrained gradient flow for surface free ener
On the other hand, there is no reason to expect that the s
should be true forT 0.005. In fact, under any circumstance
for which the motion law cannot be written as some funct
of curvature or of weighted mean curvature,23,24 there is no
research available to suggest that a gradient flow can
realized.

Srolovitz’s stability analysis for sinusoidal perturb
tions13 indicates that the relative contribution to the chemi
potential of elastic strain energy, compared to that of surf
free energy, should increase with increasing size scale.
should be generally true, regardless of system geometry.
implication of this fact is that the magnitude of elastic defo
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mation required to cause cracklike flaws in sintering powd
should increase as the mean particle size decreases, pro
the initial microstructural homogeneity remains the sam
Thus finer microstructures not only have faster evolution
netics, but they should be more resistant to dehomogen
tion by this mechanism.

Can reasonable values of physical parameters cau
trajectory likeT 0.005? Assuming dimensions of 16mm316
mm and a temperature of 1500 K, the dimensionless v
ables used in that simulation correspond to physical val
shown in Table I. These correspond approximately to
values ofg andE for MgO. Furthermore, a strain of 0.00
could be easily caused by, say, thermal expansion mism
between two materials over 1000 K, if the coefficients
thermal expansion differ by at least 531026, as they do for
Pt/MgO. One might suppose, then, that such phenom
could be important in the high-temperature performance
certain porous thin or thick ceramic films on a metallic su
strate.

Some comments are in order on the model itself. Fi
solid-solid interfaces, including grain boundaries, are not
cluded. The thermodynamics and kinetics become m
more complicated when such interfaces are present, par
larly if they are incoherent.25–27 Thus true sintering/grain
growth phenomena, which often involve substantial diffusi
of matter along grain boundaries, are not within the scope
the model in its current incarnation. For the same reason,
model does not address diffusional creep along grain bou
aries that can cause substantial rearrangement. Howe
with some minor modifications, the model could account
directional diffusional lattice creep and viscous flow. T
possibility of extending this model to allow simulation o
important phenomena, such as grain boundary diffusion
interfacial creep, is a subject of continuing inquiry.

As described in the previous sections, digitization o
smooth surface gives rise to local scatter in calculated c
vature. Determination of the chemical potential distributi
along the corresponding smooth surface is therefore p
lematic. Although the dynamics of interface motion and s
bility regimes do not seem to be greatly affected by the sc
ter, it would be desirable to have a more accur
determination of chemical potential. It may be possible,
averaging over a certain range of neighboring elements
smooth the calculated chemical potential distribution alon
digitized interface. We have chosen to exclude any spa
averaging of the curvature in this work because it introdu
another degree of freedom into the calculations, namely
weighted distance over which to average21 the boundary val-
ues. If averaging were to be included in this model, o
could select an ‘‘optimum’’ weighting function using th

TABLE I. Physical values of the important variables in Fig. 7, assum
system dimensions of 16mm316 mm andT51500 K.

Quantity Value

Young’s modulus,E 100 GPa
Surface free energy density,g 1 J/m2

Molar volume,V 831025 m3/mol



l
a
a

it
lg
A

in

ty
th
o
a
be
th
t t
or
ti

re
hi
U
en
i
th
o
ve
om
pr

or
od
or

t
st
o

h

a
o
o

W
e
a

if

am
c
th

ic
no
to
e

nd
u-

ed
he

ext.

r
ded

val-

ay

-

4485J. Appl. Phys., Vol. 83, No. 8, 15 April 1998 Bullard, Garboczi, and Carter
condition that theL2 norm be minimized for a certain mode
surface geometry, like a sinusoid. However, it is not cle
that the same weighting will produce the best results for
possible interface geometries.

The model uses the square pixel elements of a dig
image as both volume elements in the mass transport a
rithms and as finite elements in the elastic calculations.
mentioned earlier, this leads to the ambiguity of estimat
the elastic properties for elements with 0,h,1. An adaptive
mesh triangulation algorithm would eliminate this ambigui
A triangulated mesh could always be constructed such
each segment of the ESS would correspond to an edge
triangular element. Each element then could be taken to h
eitherh51 or 0. Such a nonuniform mesh would have to
recalculated continually as the interfaces evolve, and
process requires substantial computational overhead. Bu
potential benefit of resolving the strain energy density m
accurately at interfaces makes this an attractive alterna
which we are currently exploring.

Finally, we comment on the computational resources
quired to perform simulations like those presented in t
article. By far, the most memory-intensive and CP
intensive portions of the simulations are the finite elem
calculations. Memory and processing requirements also
crease with the number of elements in the system. For
combined ESS/FE simulation shown in the right column
Fig. 7, the memory usage was 15.5 megabytes which a
ages to about 600 bytes per pixel element. In terms of c
putational speed, the same simulation used roughly 50
cessor hours on a MIPS R4400 chip~250 MHz!. We do not
claim that the algorithms have been fully optimized f
maximum performance, and it is expected that future c
refinements will result in substantial increases in perf
mance.

VI. SUMMARY

A new model has been developed that allows one
simulate the combined influences of curvature and ela
energy on the thermodynamics, kinetics, and trajectory
microstructure evolution in two dimensional systems. T
model combines an equivalent sharp surface~ESS! approach
and a finite element algorithm to calculate the local bound
values of the chemical potential along solidfluid interfaces
arbitrary geometry. Tracking of the interface motion and
topological transformations are handled automatically.
used the model in this article to simulate, for the first tim
evolution within a random porous body by a first-order line
interface-reaction kinetic law under these driving forces.

Other rate laws, such as surface diffusion and bulk d
fusion, are readily incorporated into the model,1,28 and addi-
tional driving forces such as thermal gradients can be ex
ined. With the finite element algorithm, one can also tra
the evolution of macroscopic composite properties, e.g.,
effective elastic modulus and effective thermal and electr
conductivities. Such a modeling framework is therefore
only useful for gaining quantitative theoretical insight in
these complex dissipation phenomena, but may also b
ideal candidate for integrated process modeling.
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APPENDIX A: DIMENSIONLESS VARIABLES

The following dimensionless variables are catalogu
here in terms of the groups by which they are defined. T
quantities associated with each symbol are given in the t

Symbol Group

All lengths, L ~e.g., l!→ L/j

m → m/RT

g → gV/~RTj!

k → kj

E,K,G → EV/RT,KV/RT,GV/RT

s → sV/RT

C → kSALKVt/j

APPENDIX B: STRAIN ENERGY DENSITY ALONG A
DEFORMED SINUSOIDAL SOLID-FLUID
INTERFACE

Asaro and Tiller10 have given analytical expressions fo
the stress tensor components in a semi-infinite solid boun
by a sinusoidal surface perturbation:

y5a coskx.

From their expressions, we may evaluate the boundary
ues of the stress tensor, which yields

sxx5s0@12a~ak2 coskx22k!e2ak coskx coskx#,
~B1!

syy52a2k2s0 coskxe2ak coskx coskx, ~B2!

sxy52akso~12ak coskx!e2ak coskx sin kx, ~B3!

wheres0 is the applied stress. The compliance tensor m
be written

Ŝ5S G21GK

4G2K

G22GK

4G2K
0

G22GK

4G2K

G21GK

4G2K
0

0 0
1

G

D
with K5E/2(12n) andG5E/2(11n) for plane stress de
formations. The elastic strain energyW5(ŝ:Ŝ:ŝ)/2, and
upon substitution one obtains
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W5
s0

2e22ak coskx

4GK
$~G1K !e2ak coskx

24a2k2@G~eak coskx21!2K#cos2 kx

24G~2a3k3 cos3 kx2a4k4 cos4 kx!

14a2k2K sin2 kx14ak coskx@~G1K !eak coskx

22a2k2K sin2 kx#1a4k4K sin2 2kx%. ~B4!
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